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I. Phys.: Condens. Matter 6 (1994) 765-7672. Printed in the UK 

A kinetic lattice-gas model for the triangular lattice with 
strong dynamic correlations: II. Collective diffusion 

A Kronigt and 3 JacHe 
Fakultat fiir Physik. Univenitat Konstanz, Postfach 5560 M679, D-78434 Konstanz, Germany 

Received 5 April 1994, in final form 5 July 1994 

Abstract. The density-density correlation function and the siteoccupation autocorrelation 
function are calculated for the lattice-g& model with two-vacancy assisted hopping on the 
triangular lanice, by both Monte Carlo simulation and analytical approximations. The non- 
exponential time dependence of the density-density conelation function for short wavelengths 
and high concentrations is explained by the strong spatial inhomogeneity of the collective 
diffusion process. The coefficient of collective diffusion decreases vew rapidly at the highest 
concentrations. similarly to the self-dihion coefficient. The analytical calculations for a 
two-variable appmximation and a modecoupling approximation give good results for lower 
concentrations. At higher conenmtions the mode-coupling approximation is unstable, leading 
to a diverging rather than decaying correlation function for concentrations higher than 0.34. 

1. Introduction 

The kinetic lattice-gas model for the hiangular lattice with two-vacancy assisted hopping 
is introduced in the preceding paper 111, hereafter referred to as I. In this second part, the 
collective diffusion of indistinguishable particles in this model is investigated by Monte 
Carlo simulation and analytical calculation. In section 2 the Monte Carlo results for the 
density-density correlation function, or coherent intermediate-scattering function, and the 
site-occupation autocorrelation function are presented. The collective diffusion coefficient 
is derived from the results for long wavelengths. In the analytical part of the paper, 
two established formal approximation schemes are applied a two-variable approximation 
(subsection 3.2) and a mode-coupling approximation obtained with the Mori-Zwanzig 
projection method. In subsection 3.3 the mode-coupling approximation is shown to fail 
in a spectacular way, the reason for which is discussed in subsection 3.4. 

2. Monte Carlo results 

We first give the definition of the quantities calculated by the Monte Carlo method. The 
normalized site-occupation autocorrelation function &(t) is defined as 

t Present address: h!ht fir Grundlagen der Elektrotechnk Technische Univenitat Dresden, D-01069 Dresden, 
-Y. 
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where Am =no - (no) =no - c is the occupation number fluctuation of site 0 and c is the 
particle concentration (0 e c < 1). Its mean square fluctuation is given by 

A Krlinig and J Jackle 

((Ano)') = c(1- c).  (2) 

The normalized density-density correlation function, or coherent intermediate-scattering 
function, F(K, t ) ,  is defined as 

1 
A(K)  = - xexp(- iK.  n(i))Ai  a i  (4) 

is the spatial Fourier transform on a finite lattice of Q sites of the normalized occupation 
number fluctuation of site i 

Ant 
Ani = ni - (ni)  = ni - c. 

Ai = (5) 

We refer to subsection 5.1 of I for an explanation of the notation used for lattice vectors 
and for spatial Fourier transformation. (Note that ni is the occupation number of site i ,  
whereas n ( i )  stands for the vector describing the position vector r ( i )  of site i in terms of 
the basis vectors of the triangular lattice. Fourier transforms with respect to r ( i )  or n ( i )  
have wavevectors k or K, respectively.) 

The long-wavelength form of F(K, t ) ,  which follows from the diffusion equation, reads 

(6) 

where D, is the coefficient of collective diffusion. F(K,  t )  determines the autocorrelation 
function S&) through the relation 

F(K + 0, t )  - exp(-DcP(K) . t )  

The asymptotic time dependence at long times t + ca of SO@) is obtained from (6) via 
equation (7) as 

Figure 1 shows the Monte Carlo results for the autocorrelation function (1) for different 
concentrations up to c = 0.7 in a Kohlrausch plot. In this plot the Kohlrausch-Williams- 
Watts (KWW) function 

exp [ ( t / t )+ ]  (9) 

gives a straight line with slope p. For the higher concentrations c = 0.5,0.6 and 0.7 the 
curves in figure 1 are straight in an intermediate-time region, with slopes ,9 = 0.46,&41 
and 0.30, respectively. At c = 0.6, e.g. the decay of the autocorrelation function from 
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Elgure 1. Kohlrausch plot of siteoccupation autoeonelation function for concentrations c = 0.2, 
0.3, 0.4, 0.5, 0.6 and 0.7 (from the top). Dotted lines am fits by KWW fomula for c = 0.5, 0.6, 
0.7. 

0.6 to follows the Kww formula, before it turns to the asymptotic behaviour given by 
equation (8). At c = 0.7 the time dependence of S&) is more complicated. The decay 
from 0.7 to 0.2 follows the KWW formula with exponent p = 0.30. For longer times the 
effective exponent increases, until the asymptotic behaviour (8) is finally reached. 

In the Monte Carlo calculation of F(K, t )  initial lattice configurations with a small 
sinusoidal variation of the siteoccupation probability c are prepared, and the decay of the 
corresponding density modulation at later times is monitored. According to linear-response 
theory, F ( K ,  t )  is obtained as 

(10) W ,  2) = ( A @ ,  O ) I ( A ( K ,  0)). 

In figures 2 and 3 the Monte Carlo results for F ( K ,  t )  at different wavevectors are plotted 
for concentrations c = 0.2 and c = 0.7, respectively. The families of curves for the 
two concentrations look fundamentally different. For c = 0.2 the curves roughly obey time 
scaling. For c = 0.7 the curves seem to be bounded from below by the curve with the largest 
K value of n, which decays in two stages. The decay in the first stage is approximately 
exponential. In the second stage the decay is govemed by the fraction of particles f&) 
which between time zero and time t always have been immobile. With a fitted fudge 
factor of 0.83, which may be attributed to the fact that vacancies also contribute to the 
density correlation function, this fraction precisely reproduces the decay of the density- 
density correlation function in stage two (figure 4). The dependence of the correlation 
functions shown in figure 3 on wavevector and time is typical for inhomogeneous difticsion. 
At c = 0.7 only 11% of all particles are mobile at a time, i.e. can jump in at least one 
direction. The mobile particles are inhomogeneously distributed in clusters, which define 
mobile regions on a rigid background. The initially prepared concentration profile can 
decay only in the mobile regions. Therefore the decay of the density-zlensity correlation 
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function follows the propagation of the mobile regions through the lattice, as described by 
f&). Comparing the Monte Carlo results for F(K, t) with coherent intermediatescattering 
functions of undercooled liquids measured by the neutron-spin-echo method, we note that 
our result for the largest wavevector resembles the two-stage decay of the experimental 
scattering functions [2]. For smaller wavevectors the results are very different because of 
the diffusion dynamics of our model. The spatial inhomogeneity of diffusion in our model 
has a counterpart in the dynamic heterogeneity of slow relaxation in undercooled liquids, 
which i s  inferred from multidimensional NMR experiments [3]. 

A Kronig and J Jdckle 

t 

Figure 2. Semi-log plot of densiry-density correlation function al c = 0.2 for wavevectors 
IC = (U. 0) with K/Z = 1, 3 .  i, $. A, A, & @om the left). Full lines, Monte WO W, 
dashed lines, two-variable approxidon (see subsection 3.2). 
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Figure 3. Same as figure 2 al c = 0.7, wifh m e  for K ~ X  = m addition. 
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Figure 4. Two-stage decay of density4asity correlation function at c = 0.7 for n = (ir, 0). 
Dashed he: 0.83fbl(r) (see text). 

For the smaller wavevectors (K < a14 at c = 0.2 and K < n/16 at c = 0.7) the decay 
of P(K, t) at longer times is exponential. The corresponding decay rates Y(K) are given in 
figures 5(a) and S(6). The quadratic K dependence of Y(K) for K --f 0 defines the coefficient 
of collective diffusion D ,  according to the relation 

Y (K) = &k%) (11) 

with 

(12) 4 2  k2(K) = TK . 

The results for the concentration-dependent diffusion coefficient Dc(c) are presented in 
figure 6(u). The very rapid decrease of the collective diffusion coefficient at higher 
concentrations c > 0.5 becomes apparent from the plot of the correlation factor for collective 
diffusion fc in figure 6@). fc is defined by 

fc = D J D ~  (13) 

where DL') is the meamfield result (equation (29)) for the collective diffusion coefficient, 
which is shown by the dotted line in figure 6(u). fc expresses the reduction of the collective 
diffusion coefficient by correlation effects. For particles coupled to an extemal force field, 
fc is also the conductivity correlation factor, defined as the ratio of static and high-frequency 
conductivity [4]. 

Equation (ll), which results from the diffusion equation for homogeneous difticsion, 
holds for K < a/16 at c = 0.2, but only for K < ~ 1 1 2 8  at c = 0.7. The region of validity 
of (11) defines a wavevector kc, which we interpret as the inverse of a characteristic length 
of inhomogeneous diffusion. The rapid decrease of k, from c = 0.2 to c = 0.7 suggests 
that k, goes to zero for c + 1. It would be of interest to investigate the relation of k, with 
the Characteristic length of cooperativity studied in I. 
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Figure 6. (a) Concmtmtion dependence of wfficient of collective diflusion Dc and (b) 
conelation factor for collective diffusion fc (equation (13)). Crosses: Monte Carlo data. Dotted 
line: D:') (equation (29). D ~ S M  hes: DP (equation (59)). 

3.1. General method of calculation 

In this section we calculate the normalized density-density correlation function F(R,  t )  and 
the site-occupation autocorrelation function So@) analytically in two approximations: The 
two-variable approximation and a mode-coupling approximation. To show the connection 
between these approximations, we formulate both of them as approximations to the memory 
function of the Mori-Zwanzig projection operator formalism [SI. 

As described briefly in I for the case of self-diffusion (subsection 5 4 ,  the correlation 
functions (1) and (3) can be expressed as scalar products of observables, which become 
time dependent through the action of a time-evolution operator exp(L+t). The generator 
of the time-evolution operator is the Hermitian adjoint L+ of the Liouvillean defined by 
the Master equation for the model (I, equation (25)). However, there is one difference as 
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compared with the case of self-diffision, due to the fact that for collective diffusion all 
particles are indistinguishable. Observables used in the description of collective diffusion 
remain unchanged if two particles occupying neighbouring sites i and i+S are interchanged. 
In the notation used in (I, equation (25)), 

~ ( d . 8 )  - A(@) = o if 1 - = 0. (14) 

Therefore the factor (1 - nini+s) in the expression (I. equation 26) for the exchange rate 
may he dropped, leaving only the two other factors, which arise from the kinetic constraint: 

(15) 

Using these definitions, the normalized density-density correlation function F(K, t) and 

Wi.8 = (1 - niM(8)) (1 - ni+n(a)) . 

site-occupation autocorrelation function SO@) can be written as 

FOE, t )  = (A(&), exp(L+t)A(K)) (16) 

and 

SO@) = (Ao, exp(L+t)Ao) . (17) 

We apply the projection method of Mori and Zwanzig to the subspace of observables spanned 
by the site-occupation numbers ni, or, equivalently, by the functions Ai (equation (S)), for 
all lattice sites. The projection operator projecting on this subspace is PA. The integro- 
differential equation for F(K, t )  

d 6’ (18) --F(IE, t )  = K ( K ) F ( K ,  t )  + dt’MQ, t - ~ ‘ ) F ( I E ,  t’) 
dt 

contains the frequency K ( n )  and the memory function M ( n ,  t ) .  K(n)  is given by 

K(IE) = (A(n), L+A(K)) .  (19) 

K(n) = -(1 - - C ) * f i ( R )  (20) 

With expression (I, equation (25)) for L+A and (15) for the exchange rate one finds 

where f i ( ~ )  is the following sum over the six nearest-neighbour vectors 6 of the triangular 
lattice (cf I, equation (13)): 

f i ( ~ )  = C(I -ex+. 6)) = 2(3 - COS(K, - K Z )  -cos KI - C O S K ~ ) .  (21) 

f i ( f f i )  assumes its maximum value f ,  = 9 for IE = (k/3)(1,  -1) ns, which corresponds 
to a comer of the fist Brillouin zone in IC space. Due to the hexagonal symmetry of 
the lattice there are five other equivalent IE vectors. For small IE the function fi(6) is 
proportional to kZ (cf. I, equation (20)): 

6 

f i ( K )  2(K: + K$ - Q K z )  = $ k Z ( K ) .  (22) 
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The memory function M(Ic, t) is defmed by 
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W K ,  t )  = @(IC), exp((1- .?&+r)B(@) 

where B(Ic) is the spatial Fourier hamform (cf. equation (4)) of the orthogonal part Bi of 
the time derivative of Ai given by 

Bj = (1 - P.&'Ai. (W 
The calculation of Bi yields 

Bi = (Ai+s - Ai)  [c(1 - c)Ai+o(s)Ai+tt(s) - ~'"(1 - c)~' (Ai+o(s) + Ai+.(s))} . (25) 
S 

is the leading term for high concentrations c -+ 1. The initial condition to equation (18) is 

F(Ic, r = 0) = 1. (27) 

The simplest approximation consists of neglecting the memory term in (18) altogether. 
In this 'onevariable approximation' we have 

P(Ic, t )  = exp (-(I - C ) ~ ~ , ( I C ) ~ ) .  (28) 

In the long-wavelength limit of macroscopic diffusion this leads to equation (6) with the 
lowest-order result for the collective-diffusion constant given by 

(2% (1) - 2(1 - Dc - 2  

The one-variable approximation may be considered as a mean-field treatment which neglects 
any dynamic correlations. It is used as a reference for defining the correlation factor fe for 
collective diffusion (13), which measures the strength of dynamic correlations. 

In the simplest approximation of higher order, which is considered in subsection 3.2, the 
memory function has an exponential time dependence. As we shall meet two other examples 
of this case further below (subsection 3.3), we treat it in general form here. For simplicity, 
we drop the parameter IC. For a memory function with exponential time dependence 

M(r)  = .Lexp(-y$')r) (30) 

the integro-differential equation (18) with initial condition (27) is equivalent to the 
differential equation of the damped harmonic oscillator. With the notation 

y:"' = --K(rc) > 0 (31) 

the differential equation can be written as 
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with 
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(33) (0) (0) q = y1 y, -A, P = YI + vz 
Initial conditions are 

(34) 

We note that the coefficient A, which may be interpreted as a coupling constant for the 
coupling of two modes with relaxation frequencies y,@) and y:), is always positive. The 
solution of the initial-value problem is given by 

(0) F(0) = 1 F (0) = -y1 . 

with 

n - v:"' c, = Y:") - Y2 
c1 = n - yz n - Y2 

(37) 

Since h is positive, the coefficients C1.z are positive, too. 
frequencies' y1.z the relations 

For the 'coupled-mode 

n + YZ = P (38) 

and 

nn = 4 (39) 

hold. It follows from the second of these relations that one of these frequencies (yz) becomes 
negative for negative q. If this condition is fulfilled, which is the case for either 

the density-density correlation function diverges exponentially with time. Such a result 
makes no sense and discredits the underlying approximation (see subsection 3.3). 
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Figure 7. Definition of diffmnt types of neighbour (see text). 

3.2. no-variable approximation 

In this approximation the memory function M ( K ,  t )  is evaluated within the two-dimensional 
subspace spanned by the observables A(K)  (equation (4)) and B(K). The approximation is 
expressed formally by replacing the operator L+ in (23) by PL'P, where P = PA +PE 
projects on the subspace. Since A(K)  and B(K) are orthogod 

PAPS = O  (42) 

holds. The memory function of this approximation is obtained as 

where the orthogonality relation 

( B ( 4 ,  B(K')) a &.hp 

has been used. With the abbreviations 

N ( K )  = (E(K). B ( 4 )  2 0 

L ( K )  = (B(K), L+B(K))  6 0 

(44) 

and 

(45) 

for the square and the L'-matrix element of B(K.), this can be Written as 

MQ)(K, t )  = N ( K )  exp(tL(K)/N(s)). (46) 

Since the time dependence of M ( 2 ) ( ~ , t )  is exponential, the solution Fm(&, t )  of 
equation (18) is given by equations (35>-(37) with 

1 = N ( K )  y p  = - L ( K ) / N ( K ) .  (47) 

Using the Schwartz inequality, it can be shown that 

K ( J ~ U ~ )  > (N(4)' (48) 

holds, which implies that q (equation (33)) cannot become negative. This guarantees both 
relaxation frequencies y1 and y2 to be non-negative in this approximation. 
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The difficuIt part is the calculation of the coefficients N ( K )  and L(Ic). These quantities 
were in fact calculated as the Fourier transforms of the corresponding matrix elements Nij 

and Lij in the site representation, which are defined as 

Njj = (Bj, Bj)  Lij = (Bj ,  L+Bi). (49) 

The calculation of Lij was achieved with the computer using MAPLE [6]. The matrix 
elements (49) have the symmetry of the triangular lattice. They are equal for equivalent pairs 
of sites i and j. Equivalent neighbours i of site j for which non-zero matrix elements exist 
are the six first-nearest neighbours (‘type 1’) described by the vectors 6 (I, equation (13)), 
the six second-nearest neighbours of each of the types 2(a) and 2(b) (vectors S, and 6 ~ ) ,  
and the twelve third-nearest neighbours of type 3(n) (vectors 63J (see figure 7). For the 
different types of neighbour i to the origin the mahtx elements are found to be 

1241 - c)2(4 - 3c) = No for i = 0 

LiO = . 

-1241 - c)’(24 - 13c - 23c2 + l k 3 )  for i = 0 
2 4 1  - c)’(36& 13c - 50c2 4- 292)  for type 1 
-2c(i - 43(12 + 2oC - ~ ~ 2 )  = L~ for type 2a 

for type 2b 
4c2(1 - c ) ~  L b  for type 3a 

LO 
Li 

2 8c(I -c)4=L26 

. o  otherwise. 
N ( K )  and L(ffi) are obtained by the Fourier transformation 

- COS(k1 + K z ) )  - COS(3Kz - 2K1) - COS(3Kz - Ki)  - COS(2Kz + Ki)). 
From the small-n expansion of these functions, which is given for f 1 ( ~ )  by (22) and for 
the others by 

fa@) - gk2(fi) f ~ ( f f i )  - 6k’(6) f3d6 - 21k%) (56) 
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one obtains the following results for the relaxation frequencies at long wavelengths: 
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y,(fi  -+ 0) = 7 - 9c +4c2  (57) 

where the result of the two-variable approximation for the collective diffusion constant reads 

3 7 - 2 ~  (2) - - (1 - 4 3 .  
Dc - 2 1-9c+4c2  (59) 

Also of interest is the highdensity expansion of the relaxation frequencies ~I(K.) and 
y2(fi). The leading terms of this expansion are 

yi(4 = 2 + 2 ( 1  -~)(8-(5f~(fi))/(2fi(fi)))+O(l -9’ 
(60) 

Y Z ( 4  = (1 - C P  ( 4 f m  - Bfa(d) + 00 - c)4. 

TO order (1 - c), n ( ~ )  is equd to the relaxation frequency ( - L ( K ) / N ( K ) )  of M(’)(IS, t )  
(equation (46)). y&), however, is lowered by one order of (1 - c) as compared with the 
‘one-variable’ frequency ( -K(f i ) ) .  

The results of the two-variable approximation are compared with Monte Carlo data in 
figures 2, 3, 6 and 8. In figures 2 and 3 the solution F(2)(fi,  t )  for the density-density 
correlation function is included by the dashed lines. At c = 0.2, the agreement of the 
approximation with the Monte Carlo results is good, except for K = n and K = n/2 at 
longer times. At c = 0.7, however, the approximation is very poor and correctly reproduces 
the correlation functions only at very short times. (In the two-variable approximation the first 
and second time derivative at f = 0 are exact.) According to figures 6(a) and 6(b), where the 
result equation (59) of the two-variable approximation for the collective diffusion constant 
is given by the dashed line, the approximation yields the exact value for D, at c = 0.2, but 
fails to describe the very rapid decrease of D, at higher concentrations. The result of the 
two-variable approximation for the site-occupation autocorrelation function S&), obtained 
from F@)(A, t )  by numerical integration according to equation (7), is compared with the 
Monte Carlo curve for c = 0.2 in figure 8. The result of the onevariable approximation, 
obtained from F(’)(K, t )  (equation (28)). is also included. The two-variable approximation 
is a considerable improvement over the onevariable approximation, but even at this low 
concentration a small deviation from the Monte Carlo curve remains at intermediate times. 

3.3. A mode-coupling approximation 

We apply the standard recipe for a mode-coupling approximation [5] to the memory function 
defined by the expression (23). We first express the function B(A) in terms of the functions 
A(&), which represent the coupled diffusion modes described by the approximation. Using 
the symmetry of the sites i + o(6) and i + u(6)  relative to the sites i and i + 6 (cf. figure 1 
of I), we can write the Fourier transform of expression (25) as 
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t 

F i y e  8. Kohlrausch plot of So(f) for c = 0.2. Full line, Monte Carlo data; dotted line, 
one-variable approximation; dashed line, two-variable approximation. 

The fact that B(K) vanishes linearly with IC for K + 0 is related to the conservation of 
particle number. Expressing Ai by its Fourier transform and defining coefficients gl, gz-and 
g3 by 

gi(lEl, IC”) = 
~~ 

(1~- exp[i(d. o(8) + d. a)]) 
8 

= 2 3 COS(.; + K;) - COS(-K; + K; f K l )  - COS(-K; - KL + K;)) ( -  

( -  

( -  

gz(K‘, IC”) = E (I - exp[i(d . O(S) + IC” . ~(a))]) 
6 

= 2 3 COS(K~ + K; - K;) - COS(-.; + K; + K;)  -COS(-.; + K;)) (62) 

g3(d, IC”, IC”’) = c (1 - exp[i(ffi‘. o(8) + IC” e 6 + IC“’. u(S))]) 
s 

= 2 3 COS(.; + K; + K;“ - KF) - COS(-K; + K i  + K; + KY) 

- C 0 S - K ;  - K; + K; + KF))~ 

we obtain for B(K) 
B(IC) = -J/2(1 - ~ p n - 1 / 2  8 1 C , d + I C M ) ( ~ ” ,  IC”)A(IC’)A(IC”) 

IC‘,&‘ 

+ C(I - c)Q-’ 8~,~,+IC,,+IC,”h(3)(~’, IC”, IC”’)A(IC‘)A(I”)A(IC”’). (63) 
IC‘”‘‘ 

Here symmetrized coefficients are introduced by 

h%’, IC”) = f i ( IC‘) + fl(IC”) - gl(IC’, ffi”) - g1(IC”, IC’) (64) 
and 

h(3)(IC(0, ,(a, ,p) = ; - g3(IC~p1), IC(p2), , p 3 9  (65) 
P 
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where the sum in he)  extends over the six permutations P of ffi', ffi" and ffi"'. Dropping the 
projection operator (1 - PA) in the reduced timeevolution operator (exp(1- Pa)L+t) and 
factorizing in the usual way, we arrive at the mode-coupling approximation for the memory 
function, which for C2 + 00 is given by 

x F(K.', t)F(n", t)F(K. - ffi' - K.", t ) .  (66) 

The vertex functions V @  and 
and h(3): 

me, apart from a numerical factor, the squares of h(') 

?lo)(,', ffi") = 2[h("(ffi', .")I2 
V@)(ffi', ffi", K."') = 6[h")(~.', ffi", K."')]'. 

(67) 

We denote the solution of equation (18) with the approximation M ~ u ( f f i ,  t )  for the memory 
function by F ~ c ~ ( f f i ,  t ) .  We prove that a lower bound to this solution diverges exponentially 
with time for all f f i  at concentrations higher than c = 0.6. We proceed in two steps. 

First we derive a lower bound to FMCA(K., t )  that diverges exponentially to +m above a 
certain ffi-dependent concentration c*(K.). The integro-differential equation (18) with initial 
condition (27) can be transformed into the integral equation 

FMCA(E, t )  = exp(K(@t) 
' I  I' + 1 &'eXp(K(ffi)(t - 1')) / dt"MMcA(K., &'- t")&c~(K., t"). (68) 

From the iterative solution of this equation one concludes that the solution F M ~ ( K . ,  t )  is 
positive for any f f i  and all finite times t since the vertex functions V(*) and Vc3) are non- 
negative. The first term on the RHS of (68), which is the 'onevariable approximation' 
equation (28). is a lower bound. A lower bound valid for any f f i  is obtained by replacing 
f,(ffi) by its maximum value fm = 9: 

0 

FMcA(K. t )  > exp(-(I - dzfmt).  (6% 

Similarily, it may be concluded from the integral equation (68) that replacing 
M ~ c ~ ( f f i .  t )  by some non-negative lower bound M&, t )  leads to a solution F<(K., t )  
which is a lower bound to F ~ c ~ ( f f i .  t ) .  We obtain such a lower bound by inserting the 
lower bound of equation (69) for FMCA(K, t )  into the bilinear term of equation (66) and 
dropping the trilinear term. The resulting expression 

M&, t )  = c(1- ~)~a( f f i )exp(-~( l -  c)'f,r) (70) 

where 
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is of the exponential form (30), with 

1 = c(1 - c)3a(IC) 

$) = 2(1 -cy&.  

and 

The coefficient q (equation (33)) is now given by 

= (1 - c)42fmfi (IC)  - c ( ~  - c)30r(n) 

and becomes negative for concentrations higher than a n-dependent critical concentration 
c*(Ic~, which is determined by *e condition q = 0. The result is 

For c > c*(n) the lower bound F < ( I c , ~ )  to FMCA(A.~) diverges exponentially. The 
dependence of the critical concentration c* on IC is shown in fignre 9. c* goes to one 
for K + 0. It has its m i n i "  CO* = 0.6 at the symmetry point 6 = (k/3)(1,  -1). 

Figure 9. critical concentrations c * ( q .  KZ)  h a m  lawer b u n d  to MCA solution for F(K: ?), 

In the second part of the proof it is shown that FMC.+(K, t )  diverges at least exponentially 
for all wavevectors IC # 0 if c > cbf. The idea here is as follows. Suppose that FMCA(IC, t )  
has an exponentially diverging lower bound in the +neighbourhoods of two vectors K I  and 
m. Then, through the bilinear term in expression (66), MMCA(K, t) also has an exponentially 
diverging lower bound in a +neighbourhood of K. =: RI +n2. This lower bound corresponds 
to a negative frequency y?) in equation (30). According to case b considered at the end 
of subsection 3.1, this leads to a lower bound for FMCA(IC, t )  near IC = 6 1  + nz, which 
also diverges exponentially. Because F(n,  t) = F(-n, t ) ,  the same holds also for the 
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difference K = ffi, - Q. This process may be repeated. In the end, any vector K in the 
interval I K I , Z (  < z can be reached by successive subtraction and addition of pairs of vectors, 
starling from vectors in a e-neighbourhood of K ~ ,  for which F ~ c ~ ( f f i ,  f) has an exponentially 
diverging lower bound at all concentrations higher than CO* + E. Therefore F M ~ ( K ,  t )  has 
the same property for any K. We do not care to formulate the proof in more mathematical 
detail. 

In 161 it was proved that F M ~ ( K ,  t)  has no finite upper hound for concentrations higher 
than a second critical concentration c**(K), which has a minimum value of c** = 0.5223 at 
K = ffis. which is lower than CO*. 

Since the estimate (69) used above is rather conservative, one may expect that the 
instability of the mode-coupling approximation in fact occurs at a considerably lower critical 
concentration. This expectation is confirmed hy the numerical calculation of F ~ c ~ ( f f i ,  t). 
The integral equation (68) was solved by iteration. Only the bilinear term of MMCA(K, t) 
(equation (66)) was kept. At concentration c = 0.2 the MCA result for the autocorrelation 
function &(f) is almost identical with the result of the two-variable approximation. For 
c = 0.3 a comparison of the M a  result with the Monte Carlo data and the results of the one- 
and the two-variable approximation is shown in figure 10. In an intermediate-time region, 
the mode-coupling result is in slightly better agreement with the Monte Carlo data than 
the two-variable approximation. However, even at c = 0.34, the mode-coupling solution 
develops a non-monotonic time dependence and starts to increase after an initial period of 
decay. Independent of whether this growth is exponential at long times or not, we conclude 
that our mode-coupling approximation fails qualitatively at least for concentrations higher 
than 0.34. 

1 70 

t 

Figure 10. Log-log plot of So(4 for c = 0.3. Dotted l i  Monte clrlo; full li. 
dash-doned line, one-variable appmximation: dashed line, hvo-variable approximation. 

M U ;  

3.4. Discusswn 

Why does the standard mode-coupling approximation fail in such an obvious way for our 
model, while it leads to a physically acceptable result for models of simple liquids [7-101? 
This is explained hy two differences which occw in the application of the projection-operator 
formalism to these two cases. 
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The first difference concems the sign of the memory function. The memory function 
as defined by equation (23) is essentially positive for our model and essentially negative 
for liquid models. The reason is that in our case of irreversible dynamics the generator 
L+ is Hermitian, whereas for the reversible Hamiltonian dynamics of a model liquid the 
Liouvillean is anti-Hermitian.? In our case, therefore, the memory term in equation (18) 
counteracts the negative relaxation term K ( K ) F ( K ,  t). A related difference was pointed out 
by Kawasaki who noted that mode coupling enhances the lifetime rather than the decay rate 
of fluctuations in dissipative models of critical dynamics [ll-131. 

The second difference is that for our diffusion model current and density are not 
orthogonal as they are in the Hamiltonian description of a liquid. L+A(K) is proportional 
to the Fourier transform of the longitudinal current density. Its projection on the Fourier 
transform of the particle number density is given by K ( K )  (equation (20)). which is non- 
zero. This has consequences for a two-variable version of the mode-coupling approximation 
analogous to that used for liquids. If K ( K )  were zero, the memory integral of the two- 
variable MCA would be of the same form as in the case of liquids, leading to a dynamical 
transition with incomplete decay of the density-density correlation function for t -+ 00. 

In our case of non-zero K ( K )  the memory integral is different. (A similar difference was 
noted for the case of Brownian dynamics in [14].) We expect the two-variable version of 
the mode-coupling approximation to have the same instability as the one-variable version, 
if at a somewhat higher critical concentration. This was found to be the case for a similar 
treatment of a kinetic king model with strong dynamical correlations [15]. 

We conclude that, due to these differences, the result for the density-density correlation 
function is qualitatively more sensitive to the inaccuracy of an approximate memory function 
in the case of our models. Here the mode-coupling approximation leads to the catastrophic 
result of an exponentially diverging function, whereas for a liquid model the spurious result 
of a sharp dynamical phase transition is obtained, which does not violate any basic physical 
principle. 

4. Summary 

The density-density correlation function F(K, t) and the site-occupation autocorrelation 
function So@) for our model were calculated by Monte Carlo simulation for particle 
concentrations up to c = 0.7. The collective diffusion coefficient, which derives from 
the long-wavelength data, decreases very rapidly with increasing concentration, which 
is qualitatively similar to the decrease of the self-diffusion coefficient studied in L At 
higher concentrations the density-density correlation function shows features characteristic 
of spatially inhomogeneous diffusion. For the largest wavevector, F(K,~) decays in 
two stages. The slow non-exponential decay in the second stage is determined by the 
propagation of mobility through the lattice. Such a two-stage behaviour of the density- 
density correlation function is also found experimentally for undercooled liquids near the 
glass transition. Moreover, the spatial inhomogeneity of diffusion in our model is analogous 
to the heterogeneity of slow relaxation in those liquids. 

In zddition to the MonteCarlo calculations, two analytical approximations were applied: 
a twc-variable approximztion and a mode-coupling approximation. The first of these leads 
to satisfactory results for low Concentrations c = 0.2 and 0.3, but does not describe 
the very rapid slowing down of diffusion at the higher concentrations. The mode- 
coupling approximation yields comparable results for the low concentrations. For higher 

t One of us (10 acknowledges a remark by Rofessor Rolf Schilling on this point. 
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concentrations, however, it produces exponentially diverging correlation functions. The 
divergence was proved to occur at all wavevectors for concentrations higher than 0.6. 
Nunlencal integration of the MCA equation of motion indicates that the instability exists 
already for c = 0.34. The formal reasons for this failure are discussed in subsection 3.4. 
It has thus been shown that the usual recipe for deriving mode-coupling approximations in 
the framework of the projection method of Mori and Zwanzig fails equally for kinetically 
constrained Ising-spin models with singlespin flip (Glauber) dynamics [15-181 and lattice- 
gas models with diffusion (Kawasaki) dynamics. 

A Kronig and J Jiickle 
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